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Abstract. In this paper we show that a damped harmonic oscillator (the simplest dissipative
physical system) is canonically equivalent to a generalized harmonic oscillator (a conservative
system) even for time-dependent parameters. As a consequence, the Hannay’s angles and the
adiabatic invariants of the two systems appear to be the same, modulo this equivalence. This
raises the question of whether this analogy can be extended to other nonlinear dissipative systems.

The Hannay’s angle [1] (the classical counterpart of the Berry’s geometric phase [2]),
originally associated with the adiabatic evolution of classical Hamiltonian systems, has
been recently extended to a large class of dynamical equations corresponding to dissipative
non-Hamiltonian systems: nonlinear equations with limit cycles [3] or with more general
internal symmetries [4], equations describing the dynamics of the laser [5], and so on. In
this paper, we first show that one of the historical examples of Hannay’s angle, namely the
one associated with the generalized harmonic oscillator (GHO), can also be associated with
a well known and simple dissipative system: the damped harmonic oscillator (DHO). Then
we prove, more generally, that the two systems are indeed canonically equivalent, even
for time-dependent parameters. Although the link between these systems has already been
considered in the literature, in particular in connection with the quantization of the DHO
[6], no such systematic and simple comparison of the two models exists.

The GHO and DHO dynamical systems are specified, respectively, by the Hamiltonian

H = 1
2(xQ2 + 2yQP + zP 2) (1)

and by the equation of motion

d

dt
(mq̇) + 2γ q̇ + kq = 0. (2)

Let us first rederive the Berry’s and Hannay’s results relative to the adiabatic theory of
the GHO in a way which does not call for the Hamiltonian character of this model. This
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approach will be applied directly hereafter to the DHO equation (2). When the parameters
are fixed, one easily verifies that the solution of the GHO Hamilton equations

Q̇ = yQ + zP Ṗ = −xQ − yP (3)

reads

Q = r cos2 P = − r

z
(y cos2 + ω sin2). (4)

In (4), the angle variable2 is given by

2 = ωt + α
(
ω =

√
xz − y2

)
(5)

whereα is an arbitrary constant andr is a constant depending on the energy of the system:

H = 1
2z−1ω2r2. (6)

When the parameters vary adiabatically, the solution can still be written in the form (4), but
now r(t) and2(t) are unknown functions of time anḋr and2̇ − ω, instead of being equal
to zero, become averaged values proportional to the time derivative of the parameters. The
natural procedure to obtain these quantities is to apply the averaging method [7]. Starting
from the exact equations (3), one first solves them for2̇ and ṙ and then averages the
obtained expressions with respect to the fast variable2. A straightforward calculation
leads to the relations

2
ṙ

r
− ż

z
+ ω̇

ω
= 0 (7)

2̇ = ω + y

2ω

(
ż

z
− ẏ

y

)
. (8)

Equation (7) yields the adiabatic invariant

I = 1
2z−1ωr2 (9)

which is the action variable (related to the instantaneous Hamiltonian byH = Iω).
Equation (8) shows that the angle variable is not equal to the dynamical contribution∫ t

ω(s) ds, but acquires an additional contribution (the Hannay’s angle) the value of which
depends on the path0 followed by the parametersx, y andz in the parameters space. For
a cyclic evolution one immediately recovers, from the 1-form(y/2ω)(dz/z − dy/y), the
result obtained in [1],

2H(0) =
∫ ∫

S(0)

1

4ω3
(z dx ∧ dy + x dy ∧ dz + y dz ∧ dx) (10)

whereS(0) is any surface with boundary the loop0.
The DHO described by equation (2) or equivalently by

q̈ + 2λq̇ + ω2
oq = 0 λ = λ + ṁ

2m
, λ = γ

m
, ω2

o = k

m
(11)

can be treated in a similar way. For fixed values of the parameters (i.e. forλ = λ) the
solution is

q(t) = ae−λt cos(ωt + α)

(
ω =

√
ω2

o − λ2

)
. (12)

In the adiabatic regime, one looks for a solution of the type

q = A cos2 q̇ = −A(λ cos2 + ω sin2) (13)
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whereA and2 are now unknown functions of time. Then, applying the above explained
averaging method to the two equations dq/dt = q̇ and ḋq/dt = −2λq̇ − ω2

oq, one obtains
the relations

2
Ȧ

A
+ ṁ

m
+ ω̇

ω
+ 2λ = 0 (14)

2̇ = ω − λ

2ω

(
ṁ

m
+ λ̇

λ

)
= ω − γ̇

2mω
. (15)

Equation (14) shows that the DHO admits, in spite of the fact that it is a dissipative system,
an adiabatic invariant:

J = mωA2 exp

[
2

∫ t

λ(s) ds

]
. (16)

This invariant generalizes the quantitymω−1(ω2q2+(q̇+λq)2) exp(2λt) which is an integral
of motion for fixed parameters. It also coincides with the action variableI in the absence
of damping. In the presence of a constant or a slowly time-varying friction coefficient, the
exponential term appears as a renormalization factor for the ‘shrinking’ trajectory andJ

still represents the area of the (closed) ‘renormalized’ trajectory in the space (q, mq̇). Note
that dA/A given by (14) is integrable and thus contains no geometrical contribution, in
contradistinction to d2 given by (15). As concerns the time derivative2̇H = 2̇ − ω of the
Hannay’s angle of the DHO, it appears to be proportional to the derivativeγ̇ of the friction
constant. Consequently, even in the presence of friction, the Hannay’s angle remains equal
to zero only if the parametersm andk vary.

Formulae (14) and (15) are very similar to (7) and (8). They are in fact strictly identical
to them if one makes the following correspondence between the parameters of the two
models:

x = k = mω2
o y = λ = γ

m
z = 1

m
. (17)

This suggests that the two systems (GHO and DHO) are canonically equivalent. In order
to exhibit this point, let us write the Hamiltonian (1) in the form

H = P 2

2m
+ λPQ + mω2

o

2
Q2. (18)

From H , one deduces the Lagrangian

L(Q, Q̇) = m

2
(Q̇2 − 2λQQ̇ − (ω2

o − λ2)Q2) (19)

and the Euler–Lagrange equation of motion

Q̈ + ṁ

m
Q̇ +

(
ω2

o − λ2 − λ
ṁ

m
− λ̇

)
Q = 0. (20)

In [6] this equation has been reduced to a DHO equation through a redefinition of the
parameters of the GHO. Unfortunately this method does not lead to the simple physical
correspondence (17) between the parameters of the two models, i.e. it does not allow the
interpretation the GHO Hamiltonian as describing the motion of a particle of massm, bound
to a spring with Hooke’s constantk and submitted to a friction force with coefficientγ .
We propose a more natural method of comparison using a change of variables instead of
parameters. Formula (16) suggests that this change of variables must be such that theQ

coordinate of the GHO is the renormalizedq coordinate of the DHO defined by

Q = q exp

[ ∫ t

λ(s) ds

]
. (21)



2610 O V Usatenko et al

Indeed, it is easy to verify that the Lagrangian (19) then takes the generalized Caldirola–
Kanai form [8]

L(q, q̇) = m

2
exp

[
2

∫ t

λ(s) ds

]
(q̇2 − ω2

oq
2) (22)

and that the associated Euler–Lagrange equation of motion becomes

d

dt
(mq̇) + 2γ q̇ + kq = 0. (23)

This last equation clearly describes a DHO, the parameters of which are now exactly those
of the Hamiltonian (18). In the Hamiltonian formalism the correspondence between the
conjugate momentaP andp = ∂L/∂q̇ reads

P = p exp

[
−

∫ t

λ(s) ds

]
= mq̇ exp

[ ∫ t

λ(s) ds

]
(24)

and (21) and (24) appear to define a canonical transformation specified by the generating
function F(q, P, t) = qP exp[

∫ t
λ(s) ds]. Therefore the trajectory of the GHO in the

(Q, P ) space is obtained from that of the DHO in the(q, mq̇) space by the above-described
renormalization transformation.

In conclusion to this comparative study of the DHO and GHO adiabatic behaviour, let
us note that when the parameters are kept fixed the second-order equation (11) can also be
written under the first-order complex form

ż = (iω − λ)z ω2 = ω2
o − λ2 (25)

where

z = q − i

ω
(λq + q̇). (26)

When the parameters vary slowly with time (keeping for simplicity the massm constant), the
right-hand side of equation (25) gains the additional term−(ω̇/2ω)(z − z)− i(λ̇/2ω)(z + z)

which comes from definition (26) ofz. The averaging procedure then suppresses thez term
in the new equation forz and leads for the modulus and argument ofz to two equations
identical to (14) and (15). This simple way to recover the adiabatic invariant and the
Hannay’s angle of the DHO is interesting because equation (25) is known to be the normal
form, for finite λ, of the equation for damped nonlinear oscillators. Therefore the Hannay’s
angles of such oscillators are related to that of the DHO. Work on this Hamiltonian approach
of the adiabatic behaviour of more general dissipative nonlinear systems is in progress.
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